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Abstract. We study the influence of a contact (or delta) potential on the Aharonov-Bohm scattering
of nonrelativistic particles. In general the contact potential has no effect on the scattering as expected.
However, when the magnetic flux and the strength of the contact potential take some special values,
the Aharonov-Bohm scattering cross-section is manifestly changed. It is shown that these special values
correspond to the simultaneous existence of two half-bound states in two adjacent angular momentum
channels. Two limiting processes are presented to deal with the singularity of the contact potential and
results of the same nature are obtained.

PACS. 03.65.Nk Scattering theory – 03.65.Vf Phases: geometric; dynamic or topological

The Aharonov-Bohm (AB) effect [1] is one of the most re-
markable effects in quantum theory. The theoretical pre-
dictions have been verified by experiments long ago [2,3].
Numerous works have been devoted to the study of AB ef-
fect in various fields of physics. The simplest aspect of this
effect is the scattering of charged particles by a string of
magnetic flux created by a very tiny solenoid or a magnetic
iron whisker. In the idealized limit when the solenoid or
the whisker is infinitely long and infinitesimally small, the
scattering problem can be solved exactly in quantum me-
chanics. In the original work of AB and some subsequent
ones the calculations are based on the Schrödinger equa-
tion [1,4–6]. Since the most frequently employed charged
particles in experiments, the electron and the proton, both
have spin 1/2, in later studies the Dirac equation is em-
ployed as a starting point. The calculations based on the
Dirac equation showed [7,8] that the differential scattering
cross-section for polarized particles is rather different from
that obtained by using the Schrödinger equation even in
the nonrelativistic limit. Recently the effect of the anoma-
lous magnetic moment of the particle is considered and
the Dirac-Pauli equation is employed [9]. It turns out that
in most cases the results are the same as those without
an anomalous magnetic moment. However, when the in-
cident energy takes some special values, the cross-section
for polarized particles is dramatically changed.

Another subject concerning the AB scattering is on
the effect of some scalar potential. The hard core poten-
tial has been considered [4,5] to incorporate the effect
of the device that generates the magnetic flux, namely,
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the solenoid or magnetic iron whisker. It was shown that
the result reduces to the one of pure AB scattering when
the radius of the hard core tends to zero. The inclusion
of a two-dimensional Coulomb potential was also studied
and some exact results was obtained in both nonrelativis-
tic [10,11] and relativistic [12] cases. The latter model
with both a vector AB potential and a scalar Coulomb
one may approximately describe the relative motion of
particles carrying electric charge and magnetic flux in two
dimensions [11]. A circular ring potential (a delta function
on a circle) or a contact potential (a delta function at the
origin) has been considered in some literature of mathe-
matical physics [13–15]. Such a model has been found to be
useful in the study of semiconductor nanostructures [16]
and persistent current in mesoscopic systems [17,18].

In this paper, we consider the influence of a contact
potential on the AB scattering. The potential is of the
form

V (r) =
Ω�

2

2M
δ(r)
r
, (1a)

where M is the mass of the particle, Ω is a dimension-
less parameter characterizing the strength of the poten-
tial, and r is one of the polar coordinates (r, θ) on the xy
plane where the particle is moving. Since r = 0 is a singu-
lar point of the coordinate system, the above form of the
potential is not well defined. Thus it is a formal expression
of the a→ 0 limit of the circular ring potential

V (r) =
Ω�

2

2M
δ(r − a)

r
=
Ω�

2

2M
δ(r − a)

a
. (1b)
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This will be employed in all practical calculations and
the limit a → 0 will be taken at the end. The differ-
ence of the above circular ring potential from that con-
sidered by previous authors [13–18] should be remarked.
If a is finite, they are essentially the same. However, we
are mainly interested in the case a → 0 with Ω fixed. In
this limit, our potential has a higher singularity. It is also
remarkable that

∫
V (r) dr =

∫∞
0
V (r)2πr dr = πΩ�

2/M ,
so that when a→ 0 the potential is essentially the same as
(πΩ�

2/M)δ(r), where r is the position vector on the xy
plane. Therefore, the special form of the contact potential
employed here is a rather natural one.

According to a previous work on the quantum scatter-
ing by a pure contact potential [19], in three dimensions
(where r is a spherical coordinate) such a contact poten-
tial leads to a nonvanishing cross-section when Ω = −1,
while in two dimensions nontrivial results are obtained
only when the contact potential involves an additional
logarithmic factor. These results are somewhat surprising
since according to classical mechanics the scattering cross-
section for a contact potential is obviously zero. Anyway,
the contact potential (1a) causes no scattering in two di-
mensions by itself. According to this conclusion and based
on intuitive physical judgement, when combined with, say,
the AB potential, the potential (1b) should give only small
corrections when a is small, and such corrections should
vanish when a→ 0. Although this turns out to be true in
most cases, it is somewhat unexpected that the AB scat-
tering cross-section is manifestly changed when Ω and the
magnetic flux in the AB potential take some special val-
ues. We will show that these special values correspond to
the simultaneous existence of two half-bound states [20] in
two adjacent angular momentum channels. This is similar
to the situation of a pure contact potential in three and
one dimensions [19], where unexpected results for scatter-
ing also occur when there exists a half-bound state.

The inclusion of the above contact potential in the
AB scattering may have physical interest in several as-
pects. First, it has been pointed out above that such mod-
els (with finite a) are useful in some condensed-matter-
physics problems. Second, for particles carrying magnetic
flux and electric charge, the charge-flux interaction may
be described by the AB potential, and if the charge-charge
interaction is of a very short range (since such particles
in two dimensions are somewhat artificial, say, solitons
in Chern–Simons field theory [21–28], various model po-
tentials for the charge-charge interaction may be of theo-
retical interest), the Hamiltonian with both a vector AB
potential and a scalar contact one may approximately de-
scribe their relative motion. Third, just as a hard core
potential, a circular ring potential like (1b) may as well de-
scribe approximately the effect of the solenoid or the mag-
netic whisker itself. In this respect, however, there exist
some difficulties if one attempts to examine the theoreti-
cal results by experiments. One difficulty is that one does
not know what a device would correspond to the poten-
tial (1b) with the required value of Ω. Another difficulty is
that the limit a→ 0 is difficult to realized in experiment,
since in the following calculations it means ka � 1 (k is

the wave number of the incident particle) or a � λ (λ is
the corresponding wave length). Anyway, the study may
be of theoretical interest since it reveals an effect of point
interactions that was not noticed before.

The vector AB potential is of the form

A(r) = A(r)eθ , (2)

where eθ is the unit vector in the θ direction. In the follow-
ing calculations we take two different limiting processes.
In the first process the magnetic field B(r) = Φδ(r)ez

is concentrated at the origin, where Φ is the flux of the
magnetic filed and ez is the unit vector in the z direction.
This corresponds to the choice

A(r) =
Φ

2πr
. (3a)

In the second process the magnetic field B(r) =
(Φ/πa2)ϑ(a− r)ez is uniformly distributed inside the cir-
cle r = a, where ϑ is the step function. This corresponds
to the choice

A(r) =
{
rΦ/2πa2, r < a,
Φ/2πr, r > a.

(3b)

In both processes the scalar potential (1b) is employed
and the limit a → 0 is taken finally. We will see that the
two processes give results of the same nature.

Now we write down the stationary Schrödinger equa-
tion

Eψ = Hψ =

[

− �
2

2M

(

∇− iq

�c
A

)2

+ V (r)

]

ψ, (4)

and consider partial wave solutions with positive energy
E > 0:

ψm(r, θ) = Rm(r)eimθ , m ∈ Z, (5)

then we have the ordinary differential equation for the
radial wave function

d2Rm

dr2
+

1
r

dRm

dr
+

[

k2 −
(
m

r
− qA

�c

)2

− Ω

a
δ(r − a)

]

Rm = 0, (6)

where k =
√

2ME/�. Scattering solutions will be con-
structed from these partial-wave solutions.

Equation (6) should be solved separately for r < a and
r > a. The connection conditions at r = a can be obtained
by integrating the equation from a− 0 to a+ 0. They are

Rm(a+ 0) = Rm(a− 0),

R′
m(a+ 0) −R′

m(a− 0) =
Ω

a
Rm(a). (7)

The solution for r < a depends on the choice of A(r), so it
is different in the two processes. Since A(r) has the same
form for r > a in both processes, the solution for r > a is
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∆f(θ) = i

√
2

πk

⎧
⎨

⎩

∑

m≥ν

eiνπJ2
m−ν(ξ)eimθ

Jm−ν (ξ)H
(1)
m−ν(ξ) − 2i/πΩ

+
∑

m<ν

ei(m−ν)πJν−m(ξ)[e−iνπH
(1)
m−ν(ξ) + eiνπH

(2)
m−ν(ξ)]eimθ

2[ei(m−ν)πJν−m(ξ)H
(1)
m−ν(ξ) − 2i/πΩ]

⎫
⎬

⎭
. (21)

the same. Note that the last term in the square bracket of
equation (6) vanishes when r �= a, we obtain the solution
for r > a

Rm(r) = am

[
cos
(
δm − νπ

2

)
Jm−ν(kr)

− sin
(
δm − νπ

2

)
Nm−ν(kr)

]
, r > a, (8)

where am is an arbitrary constant, Jm−ν(kr) and
Nm−ν(kr) are Bessel and Neumann functions, respec-
tively, δm is the phase shift to be determined by the con-
nection condition at r = a, and

ν =
qΦ

2π�c
. (9)

The above solution for r > a is also valid for other scalar
potential V (r) that is vanishing beyond r = a, for exam-
ple, a hard core potential.

We assume that the incident particles are from the left,
then the scattering solution is

ψ(r, θ) =
∞∑

m=−∞
ψm(r, θ) =

∞∑

m=−∞
Rm(r)eimθ , (10)

where the constant am in equation (8) is chosen as am =
im exp(iδm). The asymptotic form at r → ∞ will be given
below which shows that it is indeed a scattering solution.

First of all we write down the results for pure AB
scattering. These are different from the original ones [1,6]
in appearance since their incident particles are from the
right. In this case Ω = 0 and Rm(r) = amJ|m−ν|(kr) for
the whole range of r. We denote

ν = m0 − α, m0 ∈ Z, 0 ≤ α < 1, (11)

then Rm(r) can be written in the form of equation (8)
with the phase shifts

δAB
m =

{
νπ/2, m ≥ m0,
mπ − νπ/2, m ≤ m0 − 1. (12)

By similar calculations to those of references [1,6], the
asymptotic form of the scattering solution at r → ∞ can
be found to be

ψAB(r, θ) → eikx+iη(θ) + fAB(θ)

√
i

r
eikr , (13)

where the scattering amplitude is

fAB(θ) = i
sin νπ√

2πk
ei(m0−1/2)θ

sin(θ/2)
, (14)

and the phase factor in the incident wave is

eiη(θ) = exp
{

im0(θ−π)+iαε(sin θ)
[

arcsin(cos θ)+
1
2
π

]}

,

(15)

where ε is the sign function. Note that the phase factor
is not continuous at θ = 0 but is written in an explicitly
single-valued form.

When Ω �= 0, the solution (10) can be written as

ψ(r, θ) = ψAB(r, θ) +
1
2

∞∑

m=−∞
im
(
ei2δm − ei2δAB

m

)

× e−iνπ/2H
(1)
m−ν(kr)eimθ , r > a, (16)

where H
(1)
m−ν(kr) are Hankel functions. The asymptotic

form at r → ∞ is of a similar form to equation (13):

ψ(r, θ) → eikx+iη(θ) + f(θ)

√
i

r
eikr , (17)

where the scattering amplitude is

f(θ) = fAB(θ) +∆f(θ), (18a)

and

∆f(θ) = − i√
2πk

∞∑

m=−∞
(ei2δm − ei2δAB

m )eimθ. (18b)

Note that the phase distortion in the incident wave re-
mains the same as in the pure AB case. These results are
also valid for other scalar potential V (r) that is vanishing
beyond r = a. The subsequent task is to find the phase
shifts δm.

Now we deal with the first process where A(r) is given
by equation (3a). In this case

Rm(r) = AmJ|m−ν|(kr), r < a, (19)

where the constant Am can be determined in terms of
am by the connection condition. It can be shown that the
phase shifts in this case are determined by

tan
(
δm − νπ

2

)
=

C1 −ΩJm−ν(ξ)J|m−ν|(ξ)
C2 −ΩNm−ν(ξ)J|m−ν|(ξ)

, (20a)

where ξ = ka, and

C1 =
2
π

sin
m− ν − |m− ν|

2
π,

C2 =
2
π

cos
m− ν − |m− ν|

2
π. (20b)

When Ω = 0 this yields the result (12). On the other
hand, when Ω → ∞ this gives the result for the case of an
AB potential plus a hard core potential. It can be found
that

see equation (21) above
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∆f(θ) =

√
2

πk
sin νπeim0θ

{ ∞∑

n=0

e−iαπJ2
n+α(ξ)einθ

[(−)nJn+α(ξ)J−n−α(ξ) + (2/πΩ) sin απ] − e−iαπJ2
n+α(ξ)

+
∞∑

n=0

eiαπJ2
n+1−α(ξ)e−i(n+1)θ

[(−)nJn+1−α(ξ)J−n−1+α(ξ) + (2/πΩ) sin απ] + eiαπJ2
n+1−α(ξ)

}

. (23)

When ν = m0 (or α = 0), this immediately reduces to

∆f(θ) = eim0(θ+π)fcr(θ), (22a)

where

fcr(θ) = i

√
2
πk

∞∑

m=−∞

J2
m(ξ)eimθ

Jm(ξ)H(1)
m (ξ) − 2i/πΩ

(22b)

is the scattering amplitude for a pure circular ring poten-
tial. In this case fAB(θ) = 0, so we have

f(θ) = eim0(θ+π)fcr(θ), (22c)

and the differential scattering cross-section is

σ(θ) = σcr(θ) = |fcr(θ)|2. (22d)

This means that the AB potential has no effect in this
case as expected. It is not difficult to show that similar
result also holds for other scalar potential V (r) as long as
A(r) is given by equation (3a).

In the above we have obtained the exact scattering
amplitude for the combination of the AB potential and the
circular ring potential, given by equations (18a) and (21).
The result is rather complicated. In the following we focus
our attention on the limit case a→ 0 (then ξ → 0). Since
the result for α = 0 is simple and has been discussed above
for general a, we only consider the case with 0 < α < 1.
In this case we recast equation (21) in the following form
that only involves the Bessel functions:

see equation (23) above
This is more suitable for approximate calculations. When
ξ → 0, every term has a finite denominator and an in-
finitesimal numerator, so the correction to the AB scat-
tering amplitude is in general small. This is just what is ex-
pected and is trivial. However, when Ω takes some special
values, we have finite corrections. First, when Ω = −2α,
the n = 0 term in the first sum gives a finite contribution.
If infinitesimal terms are omitted, we have in this case

∆f(θ) = −
√

2
πk

sin νπeim0θ,

f(θ) = i
sin νπ√

2πk
ei(m0+1/2)θ

sin(θ/2)
= eiθfAB(θ). (24a)

Second, when Ω = −2(1−α), the n = 0 term in the second
sum gives a finite contribution, and we have

∆f(θ) =

√
2
πk

sin νπei(m0−1)θ,

f(θ) = i
sin νπ√

2πk
ei(m0−3/2)θ

sin(θ/2)
= e−iθfAB(θ). (24b)

In both cases we have finite corrections to the scattering
amplitude, but the scattering cross-section remains un-
changed. However, when the two conditions are satisfied
simultaneously, which requires

α = 1
2 , Ω = −1, (25)

then both terms are present in ∆f(θ), and the scattering
amplitude and cross-section turn out to be

f(θ) = (2 cos θ − 1)fAB(θ),

σ(θ) = (2 cos θ − 1)2σAB(θ). (26)

In particular, we have σ(π/3) = 0 and σ(π) = 9σAB(π),
so the backward scattering is remarkably amplified by the
contact potential. In conclusion, when the magnetic flux
and the strength of the contact potential take special val-
ues, the AB scattering cross-section is manifestly changed.
This seems to be unexpected.

Let us have a further look into the above result. First
we examine the phase shifts determined by equation (20).
It can be shown that when a→ 0 the phase shifts in gen-
eral tend to those for pure AB scattering given in equa-
tion (12), this is an expected result. However, under the
condition (25), the situation is subtle and two of them
have unusual limits:

δm0 → m0π − νπ

2
, δm0−1 → νπ

2
. (27)

Second we examine the bound states and see what hap-
pens in this case. Bound states with negative energyE < 0
may be expected when Ω < 0. We denote κ =

√
2M |E|/�

and the wave function of bound state in the mth angular
momentum channel as ψb

m(r, θ) = Rb
m(r)eimθ , then the

radial wave function satisfies

d2Rb
m

dr2
+

1
r

dRb
m

dr
−
[

κ2 +
(m− ν)2

r2
+
Ω

a
δ(r − a)

]

Rb
m = 0.

(28)
The solution of this equation is

Rb
m(r) =

{
bmI|m−ν|(κr), r < a,
cmK|m−ν|(κr), r > a,

(29)

where I|m−ν|(κr) and K|m−ν|(κr) are Bessel functions of
imaginary argument, and the coefficients bm and cm are
determined by the connection and normalization condi-
tions. The connection condition (7) leads to the transcen-
dental equation for the energy levels:

I|m−ν|(κa)K|m−ν|(κa) = −1/Ω. (30)
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Since the left-hand side is positive, there may exist some
root for this equation only when Ω < 0 as antici-
pated above. From the graph it can be seen that the
function I|m−ν|(κa)K|m−ν|(κa) decreases monotonically
when the argument increases. Thus there is one (and
only one) root for the above equation when 1/|Ω| ≤
I|m−ν|(x)K|m−ν|(x)|x=0, or

|Ω| ≥ 2|m− ν| = 2|m−m0 + α|. (31)

Therefore, we have a bound state in the mth channel
when the above condition holds with the larger sign, or
a half-bound state [20] when it holds with the equal sign.
With a larger Ω, we have bound (or half-bound) states
in more channels. Under the condition (25), we have two
half-bound states, one with m = m0 and the other with
m = m0 − 1, and no bound or half-bound states in other
channels. Therefore, the unusual result for the phase shifts
in equation (27) is associated with the existence of half-
bound states in the same channels, which in turn leads to
the unexpected scattering cross-section in equation (26)
when a → 0. This is similar to the situation for a pure
contact potential in three and one dimensions [19].

From equation (20) we see that the phase shifts de-
pend only on ξ = ka, rather than in k and a separately.
Thus lima→0 δm is the same as the threshold phase shift
limk→0 δm. In the study of the Levinson theorem it has
been known for a long time that the existence of a half-
bound state in some angular momentum channel may lead
to an unusual result for the threshold phase shift in the
same channel [20,29,30]. Therefore the above result is not
quite surprising.

Now we deal with the second process where A(r) is
given by equation (3b). In this case

Rm(r) = Bmr
|m| exp

(

−νr
2

2a2

)

F

( |m| −m+ 1
2

− ξ2

4ν
, |m| + 1,

νr2

a2

)

, r < a, (32)

where F (β, γ, z) is the confluent hypergeometric func-
tion [31] and Bm is a constant. It can be shown that the
phase shifts in this case are determined by

tan
(
δm − νπ

2

)
=

ξJ ′
m−ν(ξ)Fm(ξ) − Jm−ν(ξ)Gm(ξ)

ξN ′
m−ν(ξ)Fm(ξ) −Nm−ν(ξ)Gm(ξ)

,

(33)
where

Fm(ξ) = F

( |m| −m+ 1
2

− ξ2

4ν
, |m| + 1, ν

)

, (34a)

Gm(ξ) =
(

m− ν − 1 +Ω +
ξ2

2ν

)

F

( |m| −m+ 1
2

− ξ2

4ν
, |m| + 1, ν

)

+
(

|m| −m+ 1 − ξ2

2ν

)

× F

( |m| −m+ 3
2

− ξ2

4ν
, |m| + 1, ν

)

. (34b)

In obtaining these results the functional relations of the
confluent hypergeometric functions [31] have been used.

If ν = m0 (or α = 0), it turns out that f(θ) = 0 in the
limit a→ 0 as expected.

When 0 < α < 1, we have the result

∆f(θ) =

√
2
πk

sin νπeim0θ

[ ∞∑

n=0

cn(ξ)einθ

(−)neiαπCn(ξ) − cn(ξ)

+
∞∑

n=0

dn(ξ)e−i(n+1)θ

(−)ne−iαπDn(ξ) + dn(ξ)

]

, (35a)

where

cn(ξ) = ξJ ′
n+α(ξ)Fm0+n(ξ) − Jn+α(ξ)Gm0+n(ξ), (35b)

Cn(ξ) = ξJ ′
−n−α(ξ)Fm0+n(ξ) − J−n−α(ξ)Gm0+n(ξ),

(35c)

dn(ξ) = ξJ ′
n+1−α(ξ)Fm0−n−1(ξ)−Jn+1−α(ξ)Gm0−n−1(ξ),

(35d)

Dn(ξ) = ξJ ′
−n−1+α(ξ)Fm0−n−1(ξ)

− J−n−1+α(ξ)Gm0−n−1(ξ). (35e)

When ξ → 0, every term has an infinite denominator
and an infinitesimal numerator, so the correction to the
AB scattering amplitude is in general negligible. This
is also an expected result and is trivial. However, when
Ω and α satisfy some relation, we have finite correc-
tions. First, when Gm0(0)/Fm0(0) = −α, the n = 0
term in the first sum gives a finite contribution and we
have the result given in equation (24a). Second, when
Gm0−1(0)/Fm0−1(0) = −(1 − α), the n = 0 term in the
second sum gives a finite contribution and we have the
result given in equation (24b). In both cases the scatter-
ing cross-section remains unchanged as before. However,
when the two conditions are satisfied simultaneously, the
scattering cross section is changed and is given by equa-
tion (26). As before, both α and Ω are determined by the
two conditions. If m0 = n ∈ N, α is determined by the
transcendental equation

F (3/2, n, n− α)
F (1/2, n, n− α)

− F (3/2, n+ 1, n− α)
F (1/2, n+ 1, n− α)

− 2α = 0, (36)

and Ω is given by

Ω = Ω(α) = 1 − F (3/2, n, n− α)
F (1/2, n, n− α)

. (37)

We denote the root of equation (36) as αn, the correspond-
ing value Ω(αn) as Ωn, and the parameter ν = n− αn as
νn. If m0 = 1 − n where n ∈ N, α is determined by the
transcendental equation

F (3/2, n, n− (1 − α))
F (1/2, n, n− (1 − α))

− F (3/2, n+ 1, n− (1 − α))
F (1/2, n+ 1, n− (1 − α))

− 2(1 − α) = 0, (38)

and Ω is given by

Ω = Ω(α) = 1 − F (3/2, n, n− (1 − α))
F (1/2, n, n− (1 − α))

. (39)
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Table 1. Numerical solutions of equations (36) and (37).

n 1 2 3 4 5 10 20 30 40 50 100 1000 5000
αn 0.226 0.244 0.250 0.254 0.256 0.261 0.264 0.266 0.267 0.267 0.268 0.271 0.271
Ωn −0.921 −1.34 −1.66 −1.92 −2.15 −3.05 −4.31 −5.28 −6.09 −6.80 −9.61 −30.3 −67.7

In obtaining equations (38) and (39) the functional rela-
tions of the confluent hypergeometric functions have been
used. We denote the root of equation (38) as α1−n, the
corresponding value Ω(α1−n) as Ω1−n, and the parame-
ter ν = 1 − n− α1−n as ν1−n. Comparing equations (36)
and (38), it is easy to find that α1−n = 1 − αn, and
Ω1−n = Ωn, so that ν1−n = −νn. Therefore we conclude
that when

ν = ±νn = ±(n− αn), Ω = Ωn, n ∈ N, (40)

the AB scattering cross-section is changed by the contact
potential and is given by equation (26). This result is es-
sentially the same as that obtained in the first process.
The difference is the dependence of αn and Ωn on n in
the present case. The above result also shows that the
cross-section does not depend on the sign of the magnetic
flux just as expected.

The above discussions make sense only when equa-
tion (36) has a solution α in the open interval (0, 1). It
turns out that there is one and only one such solution
for a rather wide range of n. Some numerical results are
listed in Table 1. It can be seen that αn varies with n very
slowly, and for small n, Ωn is close to the result Ω = −1
obtained in the first process.

To understand the above result we again examine the
phase shifts and bound states in the present case. Now the
phase shifts are determined by equation (33). As before
we find that they in general tend to those for pure AB
scattering when a→ 0. However, when the condition (40)
is fulfilled, two of them tend to the unusual result given
by equation (27). As for the bound states, the radial wave
equation in the present case reads

d2Rb
m

dr2
+

1
r

dRb
m

dr
−
[

κ2 +
(
m

r
− qA

�c

)2

+
Ω

a
δ(r − a)

]

Rb
m = 0, (41)

where A(r) is given by equation (3b). The solution of this
equation is

Rb
m(r) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

bmr
|m| exp

(

−νr
2

2a2

)

F

(
|m| −m+ 1

2
+
κ2a2

4ν
,

|m| + 1,
νr2

a2

)

, r < a,

cmK|m−ν|(κr), r > a.
(42)

The connection condition (7) leads to the transcendental
equation for the energy levels:

Ω = ν − |m| +
κaK ′

|m−ν|(κa)

K|m−ν|(κa)

− 2ν
F ′[(|m| −m+ 1)/2 + κ2a2/4ν, |m|+ 1, ν]
F [(|m| −m+ 1)/2 + κ2a2/4ν, |m|+ 1, ν]

. (43)

This is rather complicated. We will not study it in detail,
but only consider some half-bound states. The condition
for a half-bound state in the mth channel is

Ω = 1 − |m− ν| − (m− ν) − (|m|
−m+ 1)

F [(|m| −m+ 3)/2, |m|+ 1, ν]
F [(|m| −m+ 1)/2, |m|+ 1, ν]

. (44)

This is still complicated. However, it is not difficult to
show that the condition for the simultaneous existence of
two half-bound states, one with m = m0 and the other
with m = m0 − 1, is equation (40). Thus we see again
that the unexpected result for the scattering cross-section
is associated with the existence of two half-bound states.

In summary we have studied the effect of a contact
potential on the AB scattering. It turns out that when
the magnetic flux and the strength of the contact potential
take some special values, the AB scattering cross-section is
manifestly changed. This result appears to be unexpected.
We have shown that this unexpected result is associated
with the existence of two half-bound states in two adjacent
angular momentum channels, which yield unusual result
for the phase shifts in the corresponding channels. To deal
with the singularity of the contact potential, two different
limiting processes are presented, and the results obtained
are qualitatively the same in the two processes.

This work was supported by the National Natural Science
Foundation of the People’s Republic of China (grant numbers
10275098 and 10675174).
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